
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, MONTH YEAR 1

Subspace-Map: Interactive Visual Analysis for
Subspace Data with a Map Metaphor

Jincheng Li, Chufan Lai, and Xiaoru Yuan

Abstract—Subspace analysis of high-dimensional data is ex-
tremely challenging due to the huge exploration space. We
propose Subspace-Map, a novel approach with a map metaphor
for interactive exploration of various subspaces. We utilize a
subspace search algorithm to identify a moderate number of
potentially valuable subspaces, each visualized as a city on the
map. Similar cities are clustered into provinces and countries,
highlighting common data and dimensional patterns that can
guide users in constructing desired subspaces. With the map,
users can grasp an overview of the exploration space and explore
different subspaces via recommended tour routes in more detail.
We demonstrate the effectiveness of Subspace-Map through cases
with real-world data, experiments with user feedback, and a
comparison with state-of-the-art subspace data visualizations.

Index Terms—High-Dimensional Data, Subspace Analysis,
Map Metaphor

I. INTRODUCTION

IN high-dimensional datasets, each data item is character-
ized by multiple attributes. However, not all attributes are

equally informative. Redundant attributes can obscure crucial
patterns, like clusters and correlations. For instance, in ana-
lyzing the relationship between education level and income,
attributes like weight and height are usually less insightful.
The more time we spend studying redundant attributes, the
less likely it is to reveal the information of interest. Hence,
experienced analysts often start by selecting a small, task-
relevant subset of dimensions. The data space created by a
subset of dimensions is known as a subspace.

Subspaces are of two types: axis-aligned and non-axis-
aligned. Axis-aligned subspaces have axes parallel to the orig-
inal dimensions, while non-axis-aligned subspaces use axes
representing weighted combinations of these dimensions. Non-
axis-aligned subspaces, often produced by linear dimension-
ality reduction methods, are adept at uncovering patterns like
clusters but typically do not maintain dimensional semantics.
This paper focuses exclusively on axis-aligned subspaces for
their user-friendliness and interpretability. We refer to them as
“subspaces” for short.

Subspace analysis presents significant challenges, including:
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• Overwhelming exploration space. In combinatorial
terms, this issue manifests as the combinatorial explosion
problem. For a d-dimensional dataset, there are altogether
2d − 1 subspaces, each of which may present unique
data patterns. The exploration workload doubles with
each added dimension, making it easy for users to be
overwhelmed without a clear mental map.

• Complex dimension-data pattern interplay. Adding
or removing a single dimension seems like a subtle
alteration, but it can drastically alter the data structure.
Analysts, unable to predict these changes, might inadver-
tently disrupt important data patterns.

• Lack of planning in exploration. After investigating one
subspace, deciding the next one to explore is challenging.
Analysts may attempt to locate a similar candidate that
minimizes changes in dimensions and data. However, the
unpredictability of data structures within subspaces often
leads to a trial-and-error approach.

Various algorithms have been developed to identify sub-
spaces with valuable data clusters [1]–[3]. However, they
often yield redundant results, necessitating further organization
and analysis with the assistance of visualization [4], [5].
These algorithms also lack guidance for dimension selection,
complicating user adjustments. While there are visual ana-
lytic methods to assist in subspace exploration, they have
limitations: some require inefficient manual planning [6], [7],
while others only work with 2D subspaces [8], restricting their
effectiveness and applicability.

We set three goals to address the challenges mentioned:

• G1: Help users build up mental maps of the subspace
exploration space.

• G2: Reveal the interplay between dimension and data
patterns to guide dimensional decisions.

• G3: Aid users in scheduling their exploration with a
series of smoothly transitioned subspaces.

We propose Subspace-Map, a visualization approach em-
ploying map metaphors to provide an overview of subspaces
and guide users in the exploration. It visualizes the explo-
ration space as a geographic map, representing each subspace
as a city (G1). The landscape of each city represents the
data patterns shaped by specific natural factors (dimension
combination). By comparing landscapes, similar cities are
clustered into provinces and countries. We extract common
dimensions and data patterns in each cluster, revealing the
inherent interplay between dimensions and data patterns (G2).
We also construct tour routes, allowing users to schedule their
subspace “trips” to explore different landscapes (G3).
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The remainder of the paper is structured as follows. Sec-
tion II provides a literature review on high-dimensional data
visualization, subspace analysis, and map metaphor visualiza-
tions. Section III discusses design considerations and intro-
duces Subspace-Map’s conceptual design. Details regarding
map construction are presented in Section IV. We describe
our prototype system’s user interface and interactions in
Section V. Section VI evaluates Subspace-Map through two
case studies, a user study, and a comparison with state-of-the-
art approaches. Section VII discusses current limitations and
potential improvements. The final section concludes the paper.

II. RELATED WORK

In this section, we first describe high-dimensional data
visualizations that identify key dimensions. We then introduce
subspace mining techniques and associated visualization meth-
ods. Finally, we review visualizations using map metaphors.

A. Dimension Selection in High-Dimensional Data

Dimension selection, critical for reducing dimensionality
while retaining important features, demands extensive data
familiarity, a condition often lacking in data analysis. Research
addressing this challenge falls into three broad categories.

The first category encompasses methods grounded in dimen-
sion similarity. In the early research of parallel coordinates [9],
Yang et al. [10] suggested clustering similar dimensions and
using the centroid or average of each cluster as a representative
dimension. Turkay et al. [11] applied dimensionality reduction
and statistical modeling to create representative factors. Zhang
et al. [12] utilized correlation strengths and established more
refined rules for dimension clustering.

The second category focuses on selecting crucial dimen-
sions based on quality metrics. The Rank-by-Feature Frame-
work [13] enables users to rank dimensions using statistical
criteria, useful in scatterplot matrices (SPLOM) [14] and par-
allel coordinates. Scatterplot pattern salience measures [15],
including Scagnostics [16], rank plots in SPLOMs [8] to
enhance exploration efficiency. Sedlmair et al. [17] proposed a
taxonomy for visual cluster separation in scatterplots, guiding
the design and evaluation of cluster separation measures. In
parallel coordinates, metrics have been introduced to detect the
inter-axis patterns [18] and rank ordering schemes [19]. PC-
Expo [20] identifies twelve common analysis tasks, offering
an interactive framework for axes reordering and local pattern
detection. We refer to [21], [22] for a comprehensive review.
With machine learning advancements, more advanced methods
have emerged. Drawing inspiration from contrastive principal
component analysis (cPCA) [23], ccPCA (contrasting clusters
in PCA) [24] calculates dimension contributions to each clus-
ter. Similarly, Knittel et al. [25] introduced a neural network-
based model for extracting dimensions correlated with item
groups. Our method falls into this category, extracting crucial
dimensions by evaluating their dominance in patterns.

In contrast to automated methods, the third category em-
phasizes interactive dimension selection without preset notions
of interest. Voyager [26] and its advanced version [27] offer
free selection from a complete list, also suggesting potentially

overlooked dimensions. Sarvghad et al. [28] achieved similar
objectives by displaying explored dimension coverage. Turkay
et al. [29] introduced dimension brushing for dual-space anal-
ysis, which Yuan et al. [7] later expanded into a hierarchical
exploration framework. Cheng and Mueller [30] presented a
unified layout for both data items and dimensions, enabling
users to simultaneously observe data item patterns, dimension
patterns, and their interrelationships.

B. Subspace Mining and Visualization

Dimension selection methods effectively identify a lim-
ited number of subspaces or those with fewer dimensions.
However, for high-dimensional subspaces, subspace mining
techniques become essential. These techniques aim to discover
subspaces with interesting patterns, often hidden clusters.
For example, CLIQUE [31], a pioneering approach, uses a
combination of density- and grid-based clustering with an
apriori-style technique for identifying clusterable subspaces.
RIS [32] ranks subspaces using a quality criterion based on
the density-based clustering concept of DBSCAN [33]. These
are generally known as subspace clustering algorithms. Please
refer to [1]–[3] for a systematic review.

Subspace clustering often results in a high volume of
redundant outcomes. Hund et al. [34] visually assessed results
focusing on non-redundancy, object and dimension coverage,
and clustering characteristics. Tatu et al. [4] developed a
visual analytics system to organize redundant subspace can-
didates, illustrating their relationships through dimension and
data similarities. TripAdvisorND [35] showcases a projection
highlighting dimension differences, while Pattern Trails [5]
adopts a 1D layout to track data changes across subspaces. A
comprehensive comparison is presented in Section VI.

C. Map Metaphor for Non-Spatial Data Visualization

Maps, essential for depicting spatial relationships, vary in
types like choropleth and road maps, each conveying differ-
ent information. Their familiarity and ease of understanding
make them suitable for representing non-spatial information.
Spatialization refers to creating graphic representations for
a high-dimensional information space and transforming the
information into its essential components [36]. It supports “the
viewer’s intrinsic comfort with everyday concepts of human
spatial orientation and wayfinding to guide the exploration and
interpretation of the representation” [37]. Skupin and Fabrikant
have comprehensively reviewed spatialization methods for
creating non-geographic visualizations [38], [39].

GMap [40] a trailblazer in this field, was initially developed
for community identification in networks and later applied to
dynamic graph analysis [41] and video content study [42].
Map metaphors are widely used in set visualization and social
media data analytics. MetroSets [43] employs the metro map
metaphor for set systems visualization, depicting common
elements as metro interchanges. MosaicSets [44] creates Euler-
like diagrams for set systems using hexagonal or square grids.
In social media analysis, Chen et al. [45] introduced D-Map
for analyzing user-centric information diffusion patterns, while
Chen et al. [46] proposed R-Map for studying information
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reposting processes. A recent survey [47] provides a compre-
hensive overview of map-like visualizations. Differing from
existing approaches, Subspace-Map supports multi-level ex-
ploration with automatically extracted and organized patterns
at various granularities. It also introduces a transportation con-
cept, allowing users to follow pattern changes across subspaces
in a recommended or user-defined order.

III. THE DESIGN OF SUBSPACE-MAP

In this section, we outline our design considerations and
justify the use of a map-like representation. Then, we detail
the visual encodings and explain how the design aligns with
our initial considerations.

A. Design Considerations

We formulate three goals in Section I. To achieve these,
our design needs to meet various requirements, some of which
align with those identified in previous subspace visual analysis
research [4], [5].

DC1: Limited subspace overview with relationships.
Due to the combinatorial explosion in high-dimensional data,
displaying all subspaces within the same view is nearly
impractical. An effective mental map (G1) requires showing
the relationships between a limited number of subspaces.

DC2: Selecting potentially valuable subspaces. To meet
DC1, algorithms are needed to limit the number of visualized
subspaces. These subspaces should be informative and repre-
sentative in the exploration space.

DC3: Summarization for shared features. Summarization
alleviates scalability issues by enabling higher-level analysis
and reveals the interplay between data and dimensions (G2),
crucial for understanding subspace relationships.

DC4: Guided exploration recommendations. Recom-
mending a few representative subspaces helps users quickly
comprehend different subspaces. Suggesting a tour path with
gradual changes aids in preventing confusion from abrupt data
changes. These recommendations support users in identifying
and sequencing their exploration of target subspaces (G3).

B. Design Choices and Decisions

We refined our design through a case study with the 8D
Forest Fires data, including 247 subspaces (details in Sec-
tion VI-A). Initially, we employed a straightforward method:
a 2D projection with each point representing a subspace [4].
However, this approach revealed two major issues.

First, there is a conflict between displaying trends and
revealing details. To expose trends, the overview should
efficiently accommodate multiple subspaces (DC2). It also
needs to deliver detailed information in the overview to
help users identify areas of interest for further exploration.
While projections can display numerous subspaces, they risk
becoming cluttered, making it hard to allocate sufficient space
for each subspace’s details. This issue affects both 2D [4]
and 1D [5] projections. The core problem is using screen
distance to indicate similarity without accounting for the visual
space needed by each subspace. Overlaps are common when

a subspace requires more space than a dot. Compared to
subtle changes in screen distances, users tend to focus more
on significant features like clusters and outliers. Therefore,
reducing occlusions by adjusting screen distances can be
effective, even if it slightly compromises the accuracy of
subspace similarity representation.

Second, non-expert users may find subspace concepts dif-
ficult to understand and manipulate. Despite having needs for
subspace exploration, such as selecting data dimensions, they
are often unfamiliar with these concepts. A subspace, defined
by its dimension combination, complicates matters further
when users compare various combinations or consider higher-
level concepts like a set of subspaces. This situation calls for
adopting visual metaphors that simplify subspace analysis.

We identify two key requirements for the overview’s design.
First, it must be space-efficient and occlusion-free, capable
of displaying hundreds to thousands of distinct subspaces.
Second, it should use user-friendly metaphors to enhance
understanding and communication.

1) Visual Style of the Overview: Geographic maps, widely
recognized and capable of hosting large, occlusion-free sub-
units, offer a scalable hierarchy (e.g., states and cities) [48]
suitable for complex information spaces. People, familiar
with maps from an early age, can effortlessly interpret them.
Hence, map metaphors are frequently used to visualize diverse
information spaces like the World Wide Web [49], scientific
literature [40], and social media [45]. Studies [50] indicate
that geographic metaphors aid in understanding non-spatial
information, a process known as spatialization [38], [39]. To
address issues in 2D projections, we opted for a map-style
overview, a novel approach in subspace visualization.

Fabrikant and Buttenfield’s cognitive framework [37] sug-
gests that spatialization requires multiple levels of distinguish-
able concepts. However, subspaces lack a natural hierarchy and
often feature subtle differences despite their large numbers,
posing a challenge to spatialization. While filtering (DC2) and
summarization (DC3) ease the challenges, a space-efficient
map style remains essential.

2) Map-Like Visualizations: Map-like visualizations can be
categorized into four types based on visual primitives [47].
Point-based imitations draw on map symbols such as location
labels and icons but are prone to visual occlusions. Line-
based versions represent data categories and connections akin
to geographic borders and road networks [51]. Field-based
imitations construct “terrains” with isolines to show data
trends [52]). However, categories, connections, and continuity
are not inherent to subspace data. Area imitations, mirroring
administrative divisions, suit our needs to display individual
subspaces and higher-level summaries (DC3). Like geographic
regions, these data areas exhibit relationships through dis-
tances and do not overlap (DC1).

There are three types of area imitation maps: geometric
hulls, geometric tessellation, and regular grids [47]. Geometric
hulls group points without accommodating individual data
items, making them unsuitable for our needs. Geometric
tessellation (e.g., Voronoi diagrams) creates irregular cells for
each data point. In contrast, grid-based techniques align data
points on a regular grid. We chose regular grids to ensure
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Fig. 1. Visual encodings of Subspace-Map. Each hexagon symbolizes a subspace, and each region signifies a cluster of subspaces. Various map metaphors,
such as administrative divisions and transportation, are employed for enhanced informativeness and functionality.

uniformity among subspaces, avoiding the inequality implied
by varying cell shapes and sizes. Regular grids also simplify
standardizing the display for each subspace.

Of the regular grid types—triangular, square, and hexago-
nal [53], [54]—research [47], [55] suggests hexagonal grids
are superior due to more adjacency relationships (each
hexagon has six neighbors) and fewer cartographic errors.
Thus, we use regular hexagonal grids for spatializing subspace
data. While not as precise as projections in showing distances,
they effectively represent relative data relationships with prox-
imal and distant cells (DC1).

C. The Map Metaphors

Before delving into the algorithms, we explain how geo-
graphical terms correspond to subspace concepts in Subspace-
Map. In Subspace-Map, the exploration space is an unknown
world comprising lands (subspaces) and oceans (distances
between subspaces). As visualization designers, we function
as cartographers, developers, and tour guides.

1) Geography: As cartographers, we measure the topogra-
phy and create a map. Given that it is a fictional world, there is
no ground truth about how the subspaces should be arranged.
Leveraging Gestalt Principles [56], we place similar subspaces
close together to indicate similarity (DC1, Fig. 1).

Each subspace, envisioned as land, has a landscape de-
fined by its data distribution, the primary interest of tourists
(users). Dimension settings, analogous to natural factors,
shape these landscapes. Apart from sightseeing, tourists often
compare landscapes to understand what kind of natural factors
are responsible for local features (DC3). Lands with similar
landscapes form a continent (a cluster of subspaces), like dry
and freezing Greenland or humid and hot Amazon Rainforest.
Islands (outliers) are lands with highly distinctive landscapes.
They are set apart from continents by oceans, representing
void spaces without any specific meaning.

2) Regions: As developers, we establish cities and set up
administrative divisions. Lands with appealing scenery are
ideal candidates for developing tourist cities, corresponding
to subspaces with valuable data patterns. These cities are cho-
sen based on an aesthetic standard (subspace interestingness
metric) likely reflecting public preference (DC2). Only these
cities are displayed on the map.

As it is impractical and unnecessary for tourists to visit
every city, we introduce higher-level divisions like provinces
and countries to highlight regional characteristics (DC3).
These divisions represent clusters at different granularities. A
capital city (representative subspace) stands for its region in
each, while unique municipalities signify outliers in a cluster.

This approach results in a three-tiered hierarchy spanning
national, provincial, and urban levels. High-level summa-
rizations reveal inter-subspace relationships; low-level details
show data and dimension patterns.

3) Transportation: As tour guides, we organize sightseeing
paths for tourists (DC4). We set up flight routes (the blue path
in Fig. 1) for long-distance travel between different countries.
These routes allow quick travel from one city to another,
like flying directly from Los Angeles to London. However,
this swift travel can lead to a metaphorical “jet lag” due to
abrupt environmental changes. In our context, this represents
the confusion from sudden visual changes when switching
between very different subspaces. As a result, while flight
routes facilitate quick journeys, they can make it hard for
tourists to trace abrupt changes in data patterns and further
reason based on the dimension changes.

As an alternative, we also establish land routes and sea
routes (the black path in Fig. 1), connecting neighboring
cities on the same continent and across seas, respectively.
These routes involve traveling through all intermediate cities
and are slower. Since neighboring cities usually have similar
landscapes, they offer a more gradual and comprehensible tour,
making understanding the differences between the origin and
destination easier.

IV. THE CONSTRUCTION OF SUBSPACE-MAP

This section details the algorithms used for processing data
and constructing Subspace-Map. As depicted in Fig. 2, we
first identify potentially valuable subspaces. Afterward, we
compute similarities between these subspaces, cluster them
based on these similarities, and extract features from each
cluster. Utilizing the clusters and similarities, we develop a
map layout algorithm to appropriately position each subspace
within a hexagonal grid.
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Fig. 2. Subspace-Map workflow. After constructing the map based on the input data, an overview showing the clusters of subspaces is provided. Users can
explore hierarchically at the cluster, sub-cluster, and subspace levels. By analyzing various kinds of patterns and pattern transitions, they can gain insight into
the dominant dimensions, stable data patterns, etc.

A. Data Preprocessing

In data preprocessing, the first step is normalization, es-
sential for enabling cross-dimensional comparison. We then
identify a limited number of potentially valuable subspaces
and measure their similarities (DC1). Using these similarities,
we cluster the subspaces. Finally, we extract features from
each cluster to uncover common patterns (DC3).

Subspace retrieval. We leverage a subspace clustering
algorithm to retrieve valuable subspaces (DC2). Selecting one
from the plethora available is challenging. We set criteria based
on Jahirabadkar and Kulkarni’s categorization scheme [57],
considering cluster orientation, overlap of dimensions or ob-
jects, search methods, and use of grid.

We focus on axis-aligned subspaces for user-friendliness
and interpretability, favoring algorithms with axis-parallel
cluster orientations. While keeping the number of subspaces
manageable, we should not overlook potentially valuable
subspaces. This means allowing dimensions and objects to
overlap, enabling the algorithm to identify significant patterns
in all subspaces. Regarding search methods, we choose the
bottom-up approach over the top-down, as the latter assigns
each item to only one cluster. Finally, we prefer density-based
methods over grid-based ones for grid usage, as they offer
more flexibility and do not restrict cluster shape and size.

In summary, our ideal algorithm should be axis-parallel,
permit overlaps in dimensions and objects, and use a bottom-
up, density-based approach. To further refine our choice,
we exclude density-based algorithms dependent on a global
density threshold, like SUBCLU [58], to prevent missing
subspaces due to varying dimensionalities.

We chose the SURFING (SUbspace Relevant For clus-
terING) [59] algorithm. SURFING identifies subspaces with
non-uniform distance distributions based on each data item’s
k-th nearest neighbor distance, suggesting meaningful data
structures like clusters. It is unbiased in dimensionality and

accommodates various cluster structures. Its use in previous
subspace visual analysis research [4], [5] allows for visual
comparability with those works. However, our method is not
exclusively tied to SURFING; any algorithm meeting our
criteria is suitable.

On the other hand, subspace clustering algorithms like
SURFING are mainly intended for quantitative data. Cate-
gorical data, lacking a natural sense of distance or density,
complicate subspace clustering. Converting categorical data
into quantitative form using techniques like one-hot encoding
is a viable solution to handle mixed or purely categorical data.

Similarity measurement. Traditional similarity measures
like Euclidean distance are ineffective for comparing sub-
spaces due to varying data distances across different dimen-
sionalities. Jäckle et al. [5]’s projected distance approach is
inaccurate due to inevitable information loss. Following Tatu
et al. [4], we measure similarity by comparing data topology,
i.e., the k-NN (k-Nearest Neighbors) relationship of data items
in subspaces (DC1).

Specifically, we generate a k-NN list for each data item
within a subspace. We regard subspace similarity for each item
as the percentage of agreement (Jaccard Distance) between
its two k-NN lists. The overall similarity is the average of
these item-wise similarities. From this, we derive a j-NN list
for each subspace, setting j to 6 to match the hexagonal
grid’s neighbor count. This helps identify common patterns
in subspaces on a smaller scale (DC3).

Clustering. To achieve summarization at different gran-
ularity levels, we hierarchically cluster the subspaces using
DBSCAN [33], a density-based method adept at identifying
clusters of various structures (DC3). We implement two clus-
tering levels corresponding to the map’s conceptual divisions
of countries and provinces. Using the sorted j-dist graph [33],
which ranks each subspace by its distance to the j-th nearest
neighbor, we perform top-level clustering to define countries
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Fig. 3. The construction process of Subspace-Map: (a) initialize the location queue; (b) update the queue after each placement; (c) reset the queue for a new
cluster; (d) continuously tiling; (e) reduce redundant map space; and (f) render map metaphors.

and islands. Then, we apply a second clustering level within
each country to delineate provinces and municipalities.

Data pattern. We assess item-wise subspace similarity by
comparing two k-NN lists for the same data item. Items with
high neighborhood agreement are deemed stable across both
subspaces. From this, we identify data items with consistent
k-NN lists across all subspaces within a cluster. This yields the
cluster’s data pattern, highlighting the common data structure
shared by its member subspaces (DC3).

Dimension pattern. Like data patterns, dimension patterns
show the common dimensions shared among subspaces in
a cluster. We calculate the occurrence frequency of each
dimension within the cluster’s subspaces. Since a subspace’s
data pattern is influenced by its dimensions, and subspaces
in the same cluster have similar data patterns, the dimensions
commonly included or excluded are crucial for these similar-
ities. We identify these as featured dimensions by applying
high and low thresholds for dimension occurrences.

Representative subspaces. A representative subspace is
required to display each cluster’s data and dimension patterns.
This is chosen as the one at the cluster’s center, having the
highest average similarity with other members. We conceptu-
alize this representative subspace as the capital city.

B. Map Construction

While numerous map layout algorithms exist [47], none
fully suit our context (Section III-B). Hence, we developed
a new layout algorithm for Subspace-Map. It involves two
steps: first, positioning an anchor point for each country and
island on the map, determining the relative positions of top-
level clusters and outliers. Second, we arrange cluster members
according to a predefined similarity-based traversal order.

1) Anchor Placement and Region Traversal: Initially, we
create a dimension-reduced projection of all subspaces for
the strategic placement of countries and islands (V in Algo-
rithm 1). We use each country’s capital as its anchor point
and estimate its position on the hexagonal grid. We use the
global dimensionality reduction technique MDS [60] over
local techniques like t-SNE [61], as MDS better preserves
all-point-pair distances for a more accurate projection [62].
Moreover, Ingram et al.’s work shows MDS’s effectiveness

Algorithm 1 Map Layout Algorithm
Input:

A hexagonal map Map;
A list of anchor points V [i] with initialized locations V [i].loc, i =
1, 2...Na, Na is the number of anchor points;
A list of traversal order lists for countries and islands T [i], i = 1, 2...Na;
A list of city-province objects for countries and islands O[i], i =
1, 2...Na;

Output:
A list of hexagonal grid cells that lists V [i]

′
for countries and islands,

with assigned locations V [i]
′
.loc, i = 1, 2...Na;

1: for i = 0; i < Na; i++ do
2: V

′
[i].push(V [i])

3: end for
4: for i = 0; i < Na; i++ do
5: if T [i].length == 1 then ▷ This is an island
6: continue
7: end if
8: // Step 1: Calculate the disabled cell list
9: Gdisabled = []

10: for j = 0; j < Na&&j! = i; j ++ do
11: Calculate the adjacent cells Gadjacent of V

′
[j]

12: Gdisabled.concat(Gadjacent)
13: end for
14: // Step 2: Maintain the location queue Q
15: for j = 1; j < T [i].length; j ++ do
16: for each adjacent grid cell g of T [i][j − 1] do
17: if g is not in Gdisabled && g is empty then
18: Q.enqueue(g)
19: end if
20: V

′
[i].push(Q.dequeue())

21: if j ̸= T [i].length− 1&&O[i][j]! = O[i][j + 1] then ▷
Two cities belong to different provinces

22: Q.clear()
23: end if
24: end for
25: end for
26: end for
27: // Step 3: Make the map compact
28: Remove empty rows/columns not causing bordering
29: Center and enlarge Map

with large data structures [63]. Based on anchor point locations
and the number of subspaces, we calculate the map’s size, i.e.,
its grid’s rows and columns, ensuring adaptability.

Next, we set the traversal order for different regions (T in
Algorithm 1). At the top level, we sequence national capitals
and islands. For the second level, we arrange cities within each
country. We start with an empty list and sequentially add the
city closest on average to those already listed, ensuring similar
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Fig. 4. The user interface of Subspace-Map. (a) Subspace List View shows each subspace’s dimensions, with black/white indicating presence/absence of
dimensions. (b) Map View displays subspace distribution based on similarities. (c) Map Detail View presents dimension and data patterns for a selected region.
(d) and (e) explain visual encodings and map metaphors, and let users switch exploration modes.

cities are positioned near each other. Since the national capital,
representing the cluster, has the highest average similarity to
other members, it is always first on the list. We repeat this
process until all cities in a country are included, treating each
country independently. As islands contain only one city, they
do not require traversal.

2) Grid Tiling: After setting the anchor points, we position
cities within the same country based on their traversal order.
We use a location queue to track available grid cells (Fig. 3a,
Q in Algorithm 1), operating on a first-in, first-out (FIFO)
basis. We allocate the first cell in the queue for each subspace,
updating the queue continuously. Upon using a cell, we add
its unoccupied, enabled adjacent cells to the queue clockwise.
Disabled cells are used to prevent adjacent placements of
different countries and islands (Algorithm 1-Step 1). For each
country and island, except the one being constructed, we mark
its adjacent cells as disabled to ensure no new subspaces are
placed next to them.

The location queue starts with the second subspace in the
traversal order, as the anchor point (the first subspace) is
already positioned by the projection (Algorithm 1-Step 2).
For each incoming subspace, we add the available neighboring
cells of the previous subspace (not disabled or occupied) to
the queue. The first cell in the queue is then assigned to the
new subspace. Next, we determine if the upcoming subspace
is in the same second-level cluster as the current one. If so, the
queue updates as usual (Fig. 3b). If not, we clear the queue and
start anew with the current subspace (Fig. 3c). This ensures
tight packing within the same cluster. We avoid starting new
queues for second-level outliers (municipalities), as they are
usually placed at the end of the list, and individual queues
could lead to an elongated tail.

After constructing all countries and islands (Fig. 3d), we
compact the layout by reducing the gaps (Fig. 3e) and then

center and enlarge the remaining grids to fully utilize the
view space (Algorithm 1-Step 3). Since compaction might
alter spatial relationships, we use colors to represent subspace
similarity, offsetting potential information loss. We project the
subspaces into 3D using the distance matrix, with each axis
corresponding to an RGB color parameter. This assigns each
subspace a unique color based on its projected coordinates.

3) Map Enriching: After generating the map layout, we
enhance it with map metaphors like capital cities, natural
factors, and travel routes for greater informativeness (Fig. 3f).

Each cluster’s representative subspace is depicted as a
capital city. The dimension combination/pattern and data dis-
tribution/pattern serve as the natural factors and landscape
for each city/region, respectively. Given the importance of
landscapes, we display them separately. We implement three
route types: flight, land, and sea. Flight routes connect any
two cities, but abrupt changes between dissimilar cities and the
significance of capital cities necessitate land and sea routes.
Land routes link capital cities within a country, and sea routes
connect port cities of different countries. Directly connecting
all capitals would clutter the map, so we calculate routes
based on minimal cumulative dissimilarity, refining them with
a minimum spanning tree algorithm for clarity. These routes
allow users to observe pattern transitions between subspaces
and track pattern evolution among representative subspaces,
clarifying the impact of different dimensions.

V. SUBSPACE-MAP SYSTEM

The prototype system consists of three views (Fig. 4): Map
View, Subspace List View, and Map Detail View.

A. Map View

The Map View (Fig. 4b) visualizes the map in Section III-C.
Each city is a hexagon, with color and distance indicating
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Fig. 5. Forest Fires Data: the analysis of cluster A. A can be divided into four sub-clusters. RH and temp dominate the clustering at this level. DMC and ISI
also play a part in some sub-clusters. Judging from Subspace List View, temp does not stand out in sub-cluster d.

subspace similarity. Clusters and sub-clusters are depicted as
countries and provinces, with capitals representing their rep-
resentatives. Outliers are shown as islands and municipalities.
Users can navigate cluster levels by zooming and panning.

At the urban level, natural factors are shown as fan-shaped
glyphs (Fig. 4d and Fig. 6 right (a)). Filled fans signify the
presence of a dimension, and unfilled fans indicate absence.
Transparency highlights shared local-scale dimension patterns
among neighboring subspaces (Fig. 6 right (b)). A fan is
more opaque if it appears frequently in the subspace’s j-
neighborhood (see ‘Similarity measurement’ in Section IV-A).

Users can select different route types for inter-city travel.
Flight routes enable direct travel between any cities, while
land and sea routes connect capital cities within and across
countries, respectively.

B. Subspace List View

The Subspace List View (Fig. 4a) shows dimensional details
of selected subspaces. It uses a histogram to depict dimen-
sion distribution, with buttons below each bar for filtering
subspaces based on dimension inclusion or exclusion. The
list beneath the histogram displays subspaces in traversal
order. Each list row corresponds to a subspace, with its
background color matching the Map View. Black and white
boxes denote the presence or absence of dimensions. This
color-order integration visually demonstrates each cluster’s
dimension patterns. Users can select subspaces by clicking
on them. The list updates to display cities along the chosen
route in travel mode.

C. Map Detail View

The Map Detail View (Fig. 4c) showcases dimension and
data patterns of selected clusters. MDS projections depict data
distributions of representative subspaces, with point opacity
indicating data stability. A more opaque point means its data
item is stable across cluster members, suggesting a minimal
impact of dimension changes on its neighbors (see ‘Data
pattern’ in Section IV). MDS projections are susceptible to
rotation, scaling, and translation. To maintain a consistent
mental map, we apply Procrustes transformation [64], aligning
different sets of positions to minimize geometric differences.
Dimension patterns are indicated on the boundary circle with

filled or unfilled circles for commonly included or excluded
dimensions, along with their names (Fig. 5).

We also offer a matrix-style alignment for data points,
referred to as the stability matrix (Fig. 5). Different matrices
display data in the same order for easy visual comparison
of patterns. Users can toggle between the matrix and the
projection. The projection is suitable for analyzing data item
similarities, whereas the matrix, avoiding overlap, is more ef-
fective for assessing data item stability—whether they undergo
significant changes or stay consistent.

At national or provincial levels, this view presents data and
dimension patterns of clusters or sub-clusters. At the urban
level, it displays details of the selected subspace. In travel
mode, it shows the starting, current, and ending subspaces.

D. Exploration Workflow

The three views are closely integrated for effective subspace
exploration (Fig. 2). The Map View serves as the primary
exploration entry, initially showing an overview of subspace
clusters. Users can delve into provincial or urban levels by
double-clicking a cluster or using the plus button in the scale
panel (Fig. 4e). At the urban level, glyphs depicting local-
scale dimension patterns become visible. The Subspace List
View and Map Detail View adjust to these level changes. The
Subspace List View shows the dimensions of each selected
subspace and their frequency, with options to select subspaces
or filter them based on dimension inclusion or exclusion. The
Map Detail View reveals data patterns of clusters and dominant
dimension patterns. Users can switch between projection and
stability matrix to focus on similarity relationships or data item
stability using the switch button.

Additionally, users can explore pattern transitions across
subspaces in air-travel or ground-travel mode, accessible via
the exploration mode panel (Fig. 4e). The air-travel mode
enables travel between any subspaces, while the ground-travel
mode connects capital cities through land and sea routes.
Travel is initiated by selecting start and end subspaces.

VI. EVALUATION

This section demonstrates Subspace-Map’s effectiveness
through two case studies, a user study, and a qualitative
comparison with state-of-the-art approaches.
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Fig. 6. Analysis of Forest Fires Data. Left: pattern transitions in cluster A. The route goes through 14 cities across 4 provinces, allowing to browse the
gradual change of patterns. It is worth noticing that subspace 9 to 11 present quite different data patterns. Right: local patterns within sub-cluster A-c. (a) For
each subspace, we show its dimensions in a glyph style. However, it is hard to find trends visually. (b) Therefore, we highlight shared dimension patterns in
different neighborhoods for better perception. Subspace 9 to 11 shows different patterns, which explains their data diversity.

A. Case 1: Forest Fires Data

The Forest Fires dataset [65] contains 517 records from
Montesinho Natural Park, Portugal, and was used by Jäckle
et al. [5] for a case study. The park is divided into 72
regions, with each record detailing the date and region of a
forest fire along with eight environmental factors: Temperature
(temp), Relative Humidity (RH), Wind speed (Wind), Rainfall
(Rain), Fine Fuel Moisture Code (FFMC), Duff Moisture Code
(DMC), Drought Code (DC), and Initial Spread Index (ISI).
These factors are part of the Forest fire Weather Index (FWI),
used by experts to estimate wildfire risk. Excluding all 1D
subspaces, we identified a total of 247 subspaces. This case is
also mentioned in the video.

Fig. 4 shows an overview of the map, showing two major
clusters (countries). From the Map Detail View (Fig. 4c), Wind
emerges as the dominant dimension at the national level. Most
subspaces in country A include Wind, while the opposite is
true for country B. Comparing their projections, it is evident
that country B’s subspaces are more prone to forming high-
density clusters. Moreover, country A’s projection has fewer
high-opacity points, indicating less stable data structures.

Curious about the inner division of cluster A, we explore
its provincial level, revealing four sub-clusters (Fig. 5). Sub-
cluster d is notably larger than the others. The Map Detail
View indicates that RH and temp are key in provincial division.
RH is prevalent in sub-cluster d but absent in sub-clusters a
to c. temp, along with ISI and DMC, differentiates the three
smaller sub-clusters. The data structures in sub-clusters b and
d show more clustering, likely due to some extreme instances.
The Subspace List View shows RH and Wind as dominant in
sub-cluster d, with other dimensions contributing less. This
confirms the insights from the Map Detail View.

Before moving on, we delve into the semantics of our
findings. In the FWI system, temp, RH, Wind, and Rain are
natural factors that generate other indicators. FFMC, DMC,
and DC reflect water contents at different surface levels, while
ISI, derived from FFMC, shows potential wildfire spread rates.
RH and temp directly impact the three water content indicators,
explaining their dominance in provincial-level clustering. Wind
stands out due to its independence from other dimensions.
Portugal’s climate, with hot, dry summers and cold, wet
winters, means RH and temp are seasonally correlated but
similar across regions. Wind, however, is more influenced
by topography and less by seasons, making it the most
informative dimension as it cannot be deduced from others.

With an understanding of each sub-cluster’s features, we
explore pattern changes across them via travel routes. We
follow a land route through all provincial capitals (Fig. 6
left), visiting 14 subspaces. Subspaces 1 and 2 exhibit high
similarity with scattered projections. Subspace 3, an outlier,
shows abrupt pattern changes. Subspaces 4 to 8, in sub-cluster
b, demonstrate gradual data pattern shifts. Subspaces 9 to 11
in sub-cluster c are less consistent. Finally, subspaces 12 to 14
illustrate a transition from scattered to clustered data patterns.

To understand why subspaces 9 to 11 exhibit varied data
patterns, we zoom into province c’s urban level (Fig. 6 right).
Fig. 6 right (a) displays dimensions of all subspaces in glyph
form, but discerning trends is challenging. By highlighting
common dimension patterns in each subspace’s neighborhood,
we achieve clearer visualization in Fig. 6 right (b). This
method does not alter the original design but varies the opacity
of different dimensions. We observe several dimension patterns
within sub-cluster c. Subspaces 9, 10, and 11 exhibit 3 local
patterns with varying states of ISI, accounting for their data
pattern diversity. Two prevalent patterns, highlighted in the
figure, originate from divided regions, indicating that some
areas are isolated on the map. This limitation in our algorithm
will be discussed in Section VII.

B. Case 2: Handwritten Digits Data

The handwritten digits data [66] contains 10,992 digits from
0 to 9, initially gathered for classification tasks [67]. We use
its testing set of 3,498 instances. Each digit’s trajectory is
resampled into 8 equidistant points, creating a 16-dimensional
feature vector represented by (x, y) coordinates. In our illus-
trations, color indicates sampling order (light to dark), and
dimensions are labeled F0 through F15. Using SURFING, we
identified 315 valuable subspaces out of 65,519 candidates.

The map reveals four distinct countries (Fig. 7a), with a
common pattern where even-numbered dimensions (F0, F2,
etc.), representing x coordinates, are mostly excluded. SURF-
ING’s focus on clustered data suggests that x coordinates
do not effectively group trajectories of the same digit, likely
due to significant variation in their x values. This indicates
that digit recognition is more influenced by y-axis patterns,
aligning with everyday observations.

The Map Detail View provides limited insight due to
cluttered projections without clear digit separation. Therefore,
we examine each digit individually to uncover specific details
and relationships (Fig. 7b, c, d). Most digits form distinct
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Fig. 7. Handwritten Digits Data: a comprehensive analysis. (a) The subspaces form four clusters featuring mainly even-number dimensions. The handwritten
trajectories of most digits (e.g., (b) digit 2 and (c) digit 3) only form one cluster in each country. (d) However, digit 5 has three clusters (highlighted in red
dotted circles) in country A because people write digit 5 in three different ways.

clusters under the four subspace settings. For instance, digits
2 and 3 each form a single cluster in every country, whereas
digit 5 has two distinct clusters. Notably, digit 5 forms three
separate clusters in country A.

To understand digit 5’s unusual pattern, we examine its raw
trajectories and discover two common writing styles: starting
with the horizontal stroke (type 1) or ending with it (type
2) (Fig. 7d). These styles result in distinctly different y-axis
patterns, explaining the two-cluster phenomenon. However,
this does not account for the third cluster in country A. Further
analysis revealed a variation in the direction of the horizontal
stroke (types 1 and 3). This is only captured in country A
because it includes F0 (the x coordinate of the starting point),
a critical indicator of the stroke’s initial direction.

We observe that digit 3’s cluster overlaps with one of digit
5’s clusters in every country. This is because when 5 is written
top-down (types 1 and 3), its y-axis pattern resembles that of
3. However, when including F0, right-to-left stroke versions
of 5 (type 1) can be distinguished from 3 (Fig. 7d, red dotted
circles). In addition, clusters of 2 and 3 are distinguishable in
all countries except B. Analyzing their raw trajectories reveals
that the key difference is in their lower halves’ direction: 2
ends left-to-right, while 3 is the opposite. B does not capture
this due to excluding F14 (the x coordinate of the ending
point), crucial for identifying the ending stroke’s direction.

C. User Study

We further evaluate Subspace-Map through a user study
in analytical scenarios. It has two main objectives: firstly, to
determine if Subspace-Map meets the goals outlined earlier
(G1-G3 in Section I), and secondly, to compare it with leading
methods in subspace visual analysis.

1) Data, Participants, and Settings: Our user study em-
ployed the Forest Fires dataset [65] for its prominent subspace
features and clear data semantics (Section VI-A). With country
A already examined, we designed the experiment to focus on
analyzing country B.

We recruited 15 participants (11 males, 4 females, ages
21-26), all undergraduate or graduate students in computer
science. Their experience with visual analysis and knowledge
of high-dimensional data varied. Significantly, many were
unfamiliar with subspace concepts and analysis. This allowed

us to assess how effectively intuitive map metaphors can
replace complex subspace concepts

The user study was conducted in a separate room with a 27-
inch 4K monitor placed on an 80cm high table. Participants
sat about 50cm from the monitor, interacting via keyboard and
mouse to complete tasks and answer questions.

The experiment had three phases: pre-training, method val-
idation, and method comparison. In pre-training (45 minutes),
we briefed participants on the data, subspace concepts, map
metaphors, and interfaces of Subspace-Map and its competitor,
using a simple dataset for practice. The method validation
phase involved participants performing tasks with Subspace-
Map, then rating and discussing their experience. In the
method comparison phase, they used both systems for similar
tasks and compared their usability. The intra-group design
allowed participants to experience and evaluate both systems.

2) Method Validation: In the method validation phase, we
assessed if Subspace-Map achieves the three goals set in
Section I. We designed five tasks based on the Forest Fires
dataset (Fig. 4) to align with these goals. Tasks T1 and T2
involved identifying countries and provinces and describing
their characteristics and relationships (G1). Task T3 asked
participants to adjust a city’s natural factors to match a given
landscape (G2). Tasks T4 and T5 required comparing cities by
following routes at the provincial level and analyzing glyphs
at the urban level (G3).

For each task, participants rated a related statement on a 5-
point Likert scale (1 for strongly disagree, 5 for strongly agree)
to indicate their agreement. Open-ended questions followed
some tasks to collect detailed feedback. For more information,
please refer to the supplementary material.

3) Method Comparison: In the method comparison phase,
we evaluated whether Subspace-Map surpasses similar meth-
ods in specific analytical tasks. This required selecting com-
parable subspace visual analysis methods as competitors.

To be ‘comparable,’ a method should meet, fully or par-
tially, Subspace-Map’s main goals (G1-G3 in Section I). We
reviewed subspace mining and visualization methods in Sec-
tion II-B. Some, like those handling only non-axis-aligned sub-
spaces [35] or those with mutually exclusive dimensions [7],
may not effectively guide subtle dimensional decisions (G2).
SMARTexplore [68] lets users define and compare subspaces,
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but lacks a comprehensive overview of multiple subspaces
(G1) and a structured exploration approach (G3).

Works closely related to ours include Tatu et al. [4]’s Sub-
space Search and Visualization and Jäckle et al. [5]’s Pattern
Trails. Like Subspace-Map, both methods use subspace search
algorithms to focus on interesting subspaces and provide 2D
or 1D overviews with aggregation mechanisms for similar sub-
spaces (G1). They facilitate understanding the dimension-data
interplay (G2) and guide exploration with ordered sequences
of subspaces (G3). However, the interestingness metric of
Subspace Search and Visualization might not ensure smooth
transitions between subspaces, an essential aspect of our
exploration scheduling approach. Besides, we had access to
only one prototype of Pattern Trails, developed by a novice
engineer. Considering the alignment with our objectives and
development constraints, we chose Pattern Trails for our
comparative study.

Although Pattern Trails is a suitable comparison, it is
important to note differences in task focus and data prepro-
cessing approaches between the two systems. Pattern Trails
emphasizes pattern transitions between single or multiple
points/clusters of subspaces, categorizing them into seven
scenarios to identify the role of dimensions in each. Therefore,
while it meets the three goals, its distinct analytical focus
might result in varying performance compared to Subspace-
Map in certain instances.

The key differences in data preprocessing between Pattern
Trails and our system are twofold. Firstly, Pattern Trails
employs a unique subspace similarity measure. It projects
subspaces into 2D, computes a distance matrix for data items
in each subspace, and then linearizes this matrix into a vector
representation. Similarity is assessed based on the differences
between these vectors. Secondly, Pattern Trails characterizes
clusters distinctively, defining a cluster’s dimensions as the
union of all dimensions in its subspaces and using the corre-
sponding projection to determine the cluster’s data pattern.

To assess the performance of Subspace-Map relative to
Pattern Trails, we established three hypotheses aligned with
our goals:

• H1: Subspace-Map provides a more accurate overview of
subspaces’ characteristics and relationships.

• H2: Subspace-Map better reveals the impact of dimen-
sional changes on data patterns and assists users in
making dimensional decisions.

• H3: Subspace-Map offers a more coherent and under-
standable path for exploration, with smoother transitions.

H1 is based on Subspace-Map’s efficient spatial use in its
2D tiled map overview, which contrasts with Pattern Trails’
1D overlapping display, and its richer information portrayal,
such as sub-clusters with distinct colors. H2 is supported by
Subspace-Map’s detailed dimensional information, like com-
monly included/excluded dimensions, which is more precise
than Pattern Trails. H3 is plausible as both methods offer
sequences of subspaces ordered by data similarity.

We designed tasks T6 to T8 to validate these hypotheses.
Considering the unique data preprocessing of both methods
and the absence of ground truth in the Forest Fires data,
we avoided accuracy-based comparisons. Instead, after using
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Fig. 8. Participants’ ratings of the eight tasks using 5-point Likert scores. Task
T4 was the only one rated slightly below 4, with all others scoring above 4.
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Fig. 9. Participant response statistics on the effectiveness of Subspace-Map
and Pattern Trails [5] for tasks T6 to T8. The x-axis shows the percentage
of ‘yes’ and ‘no’ answers. The number inside each ‘yes’ bar represents the
count of affirmative responses for that task. Task T6 includes four questions,
while tasks T7 and T8 each include two questions.

each system, participants answered yes-no questions related
to specific data phenomena or the feasibility of analytical
tasks. A ‘yes’ indicated they felt confident answering using
the system, and ‘no’ otherwise. Task T6, related to H1,
involved four questions about subspace cluster characteristics
and differences. Task T7, addressing H2, had two questions
on the outcomes of dimensional combinations or adjustments.
Task T8, for H3, included two questions about comparing
distant subspaces and planning a path to observe data changes.

Like in the method validation phase, participants rated each
task-related statement on a 5-point Likert scale and provided
detailed feedback on open-ended questions. For more details,
please see the supplementary material.

4) Results: We tracked the time participants took to com-
plete the study, averaging around 40 minutes (Mean = 2429.93
seconds, SD = 655.64 seconds). Analyzing the study’s first
part, which assessed Subspace-Map’s effectiveness, we found
that aside from T4 (scored 3.93), it scored over 4 in tasks
T1 to T5 (Fig. 8). This indicates Subspace-Map’s success in
meeting our initial goals.

Under G1, participants easily identified different countries
(T1) and provinces (T2) in the Map View, understanding
their relationships and characteristics. Feedback highlighted
the Map View and Map Detail View as particularly helpful,
with color and placement as key visual cues. Map metaphors
were praised for their intuitiveness, hierarchical structure, and
low communication costs in understanding subspace concepts.
However, a few participants noted that these metaphors could
add cognitive load due to learning concept mappings.

For G2, participants generally grasped the connection be-
tween dimensions and data patterns, using these insights to
inform their dimensional choices (T3).

Regarding G3, participants found Subspace-Map effective
in selecting their next analytical focus (T5), with color and
glyph in each grid cell aiding in identifying similar subspaces.
Most participants preferred land routes over flight routes for
discerning data changes (T4), though some critiqued the lack
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TABLE I
COMPARISON OF OUR WORK WITH FIVE STATE-OF-THE-ART APPROACHES.

Similarity measure Subspace grouping strategy Subspace layout Pattern detection strategy

Dimension Projection
Matrix/Tree [7] None None Tree and matrix Observation and manual brushing

Subspace Search and
Visualization [4]

Dimension overlap and
data topology

Dimension distribution and
representative subspace 2D projection Observation and manual brushing

TripAdvisorND [35] Dimension vectors None 2D projection Observation and manual adjustment

SMARTexplore [68] None None Table Automatic detection based on
template matching

Pattern Trails [5] Projected distance of data Dimension union of the cluster and
subspace formed by the union 1D projection Automatic detection based on

clusters between adjacent subspaces

Ours - Subspace-Map Data topology Representative subspace, data
stability, and featured dimensions Map layout

Automatic detection by 1) dimension
and data features of subspaces and
clusters and 2) pattern transition routes

of clear patterns or semantics in these changes. One participant
suggested that improved route planning or sense-making could
address this issue. Notably, 5 participants confused the Map
Detail View with RadViz [69]. We consider this a design flaw
and will discuss it further in Section VII.

In the study’s second part, assessing Subspace-Map against
Pattern Trails, participants rated Subspace-Map higher in all
three tasks (Fig. 8), echoed by their responses to the questions.
Fig. 9 shows more participants felt capable of completing tasks
with Subspace-Map. McNemar’s test confirmed significant
differences for all tasks: χ2 = 42, p < .0001 for T6;
χ2 = 18.182, p < .0001 for T7; and χ2 = 22, p < .0001
for T8. These results support H1, H2, and H3.

Participants’ feedback identified two key reasons for Pat-
tern Trails’ perceived inadequacy in task completion. First,
Pattern Trails often shows many subspace clusters without
discernible differences due to its cluster representation strategy
(see paragraph 5 in Section VI-C3). This approach masks the
dimension patterns of clusters, obscuring which dimensions
are significant in each cluster and potentially leading to
identical representations for different clusters.

Secondly, participants tried to counter repetitive cluster
representations in Pattern Trails by increasing the number of
displayed subspace clusters or showing all subspaces directly.
However, they found that too few clusters still led to repetition,
while too many or displaying all subspaces caused overlap-
ping, hindering analysis. Additionally, significant adjustments
to cluster numbers made it difficult to track which new clusters
or subspaces corresponded to the previous ones.

In summary, the disconnection between different granularity
levels, inadequate subspace cluster representation, and over-
lapping due to the 1D layout in Pattern Trails all reduced
participants’ confidence in the tool. These issues validate our
earlier design decisions.

D. Multi-Perspective Method Comparison
We also aim to compare Subspace-Map with top methods

from various perspectives, independent of predefined tasks. We
selected five related approaches for comparison: Dimension
Projection Matrix/Tree [7], Subspace Search and Visualiza-
tion [4], TripAdvisorND [35], SMARTexplore [68], and Pattern

Trails [5]. The comparison covers four aspects: similarity
measure, subspace grouping strategy, subspace layout, and
pattern detection strategy (Table I).

Similarity measure. To compare subspaces of varying
dimensionalities, TripAdvisorND calculates the Euclidean dis-
tance between the dimension vectors of their projections.
However, this dimension-focused approach can misrepresent
similarity, as small dimension changes might result in signifi-
cant data pattern differences. It also suffers from information
loss due to projection. Pattern Trails, using projected data dis-
tance, faces similar information loss issues. Subspace Search
and Visualization, on the other hand, assesses data topology
resemblance by comparing k-NN lists of data items across
subspaces. This method is not dependent on dimensionality
and avoids explicit information loss. We adopt a similar
measure in our approach.

Subspace grouping strategy. Pattern Trails defines a cluster
by its union space, a method that can lead to different clus-
ters having identical representatives and overlooks dimension
distribution. Subspace Search and Visualization chooses the
representative subspace based on the lowest dimensionality
and highest interestingness score, also considering dimension
distribution. Our approach offers more comprehensive infor-
mation, encompassing data stability, dimension stability, and
featured dimensions of each cluster.

Subspace layout. Dimension Projection Matrix/Tree em-
ploys a hierarchical tree layout for organizing subspaces,
enabling dual and recursive exploration. However, it obscures
subspace relationships and lacks visual scalability. SMART-
explore uses a table layout, with columns for dimensions,
rows for groups/clusters, and color-coded cells for aggregation
values. While useful for analyzing patterns like correlations
and clusters, it struggles with scalability. The other three
methods use projection layouts, offering better overviews but
often leading to visual occlusion, hindering detailed subspace
analysis. Our map layout, in contrast, is more intuitive, evenly
distributes screen space among subspaces, and accurately
shows their relationships.

Pattern detection strategy. SMARTexplore and Pattern
Trails offer automated exploration features, unlike the other
methods. SMARTexplore automatically detects linear corre-
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lations, clusters, and outliers using templates against each
dimension. Pattern Trails identifies transition patterns based on
cluster changes in subspace projections, though this approach
is computationally intensive and detects limited patterns. Our
method reveals the influence of dimensions on data by provid-
ing featured dimensions, data patterns (including projections
and stability), and dimension stability within clusters. Addi-
tionally, we offer routes to trace pattern transitions smoothly.

VII. DISCUSSION

In this section, we discuss the current limitations and
potential enhancements of Subspace-Map.

Subspace retrieval. Subspace clustering algorithms can
identify valuable subspaces but often produce redundant re-
sults, hindering analysis. Conversely, random sampling pre-
serves data diversity but might miss valuable subspaces. A
balanced approach could involve initially using SURFING,
then enriching its findings by randomly sampling among non-
selected subspaces.

Map layout. Fig. 6 right (b) shows recurring local patterns
in different regions, indicating that similar subspaces within
a sub-cluster may be separated due to layout algorithm con-
straints. Our two-level clustering approach allows subspaces
similar at both granularities to be in the same sub-cluster
or cluster, reflecting subspace similarities at national and
provincial levels. However, relationships within a sub-cluster
are not further detailed. The current traversal order is based
on linear similarity, overlooking potential clustering among
subspaces. A potential solution is to implement clustering at
a more granular level.

Color encoding. We project the distance matrix into 3D to
depict subspace similarity, with each dimension representing
an RGB parameter. However, no single parameter in this color
space corresponds to a perceptual property, such as hue or
brightness [70]. This could lead to inconsistencies between
intended and perceived similarities. To improve this, we could
use a perceptually-friendly color space like CIELAB [71],
or project the matrix into 2D and select colors from a pre-
designed 2D colormap [72].

Scalability. The primary computational costs lie in dimen-
sionality reduction and k-NN algorithms. Consider a dataset
with n data items and d dimensions. MDS projection for each
subspace has a time complexity of O

(
n3

)
, plus O (d · n) for

k-NN list computation. These costs escalate with increasing
d. We address this by using SURFING to reduce subspace
numbers and saving results to avoid repetition. Additionally,
parallel processing can further enhance speed, as subspace
computations are independent.

Scalability in visual representation is influenced by the
number of subspaces, dimensions, and data items. We miti-
gate this by hierarchically organizing subspaces and adjusting
hexagon sizes. Yet, our current visualizations, like fan-shaped
glyphs and boundary circle icons, become less effective when
dimensions exceed a specific number. Alternative designs
could include small squares in place of glyphs and moving
icons to one side of the boundary circle. These solutions,
however, only partly solve scalability issues due to screen

space limitations. For instance, small squares must fit within a
subspace’s hexagon. In the Map Detail View, large data item
counts cause scatterplot overlap, which can be remedied with
aggregation methods like heatmaps.

Design of the projection. We display the projection in
a circular form with boundary icons indicating dimension
patterns in our Map Detail View (Fig. 4c). Some participants in
our user study, familiar with RadViz, found this design confus-
ing, mistaking it for RadViz [69]. Interestingly, those new to
visualization did not experience this confusion. We overlooked
the potential for this misconception among users familiar with
RadViz, as they might associate the outer dimensions with the
inner distribution. We plan to rectify this in future designs to
avoid such confusion.

In future work, we aim to incorporate additional analytical
techniques and user interfaces. This could involve integrat-
ing various subspace clustering algorithms, enabling users to
choose the most appropriate one. We also plan to allow users
to adjust dimension weights, giving them control over the
prominence of specific dimensions in processes like clustering.
Additionally, we intend to improve the guidance mechanism,
automatically offering users insightful exploration directions.

VIII. CONCLUSION

We introduce Subspace-Map, a novel method for visualizing
and exploring subspaces using map metaphors. It depicts clus-
ters as regions, their representatives as capital cities, and in-
cludes routes for tracing pattern transitions between subspaces,
etc. We develop a prototype system and demonstrate its effec-
tiveness through two case studies, a user study, and a compar-
ison with state-of-the-art methods. Future enhancements will
focus on expanding its analytical capabilities and providing
more guidance for exploring subspaces. Our code is available
at https://github.com/pkuvis/Subspace-Map-prototype.
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[47] M. Hogräfer, M. Heitzler, and H. Schulz, “The state of the art in map-like
visualization,” Computer Graphics Forum, vol. 39, no. 3, pp. 647–674,
2020.

[48] R. P. Biuk-Aghai, C. Pang, and F. H. H. Cheang, “Visualization of large
category hierarchies,” in Proceedings of the 2011 Visual Information
Communication - International Symposium, 2011, p. 2.

[49] A. Dieberger and A. U. Frank, “A city metaphor to support naviga-
tion in complex information spaces,” Journal of Visual Languages &
Computing, vol. 9, no. 6, pp. 597–622, 1998.

[50] H. Couclelis, “Worlds of information: The geographic metaphor in the
visualization of complex information,” Cartography and Geographic
Information Systems, vol. 25, no. 4, pp. 209–220, 1998.

[51] L. Nachmanson, R. Prutkin, B. Lee, N. H. Riche, A. E. Holroyd, and
X. Chen, “Graphmaps: Browsing large graphs as interactive maps,” in

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3368094

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peking University. Downloaded on March 03,2024 at 02:57:59 UTC from IEEE Xplore.  Restrictions apply. 



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. XX, MONTH YEAR 15

Proceedings of Graph Drawing and Network Visualization, 2015, pp.
3–15.

[52] R. Preiner, J. Schmidt, K. Krösl, T. Schreck, and G. Mistelbauer,
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